Fast learning rate of multiple kernel learning: Trade-off between sparsity and smoothness

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Learning Rate of Multiple Kernel Learning: Trade-Off between Sparsity and Smoothness

We investigate the learning rate of multiple kernel leaning (MKL) with l1 and elastic-net regularizations. The elastic-net regularization is a composition of an l1-regularizer for inducing the sparsity and an l2-regularizer for controlling the smoothness. We focus on a sparse setting where the total number of kernels is large but the number of non-zero components of the ground truth is relative...

متن کامل

Sparsity in Multiple Kernel Learning

The problem of multiple kernel learning based on penalized empirical risk minimization is discussed. The complexity penalty is determined jointly by the empirical L2 norms and the reproducing kernel Hilbert space (RKHS) norms induced by the kernels with a data-driven choice of regularization parameters. The main focus is on the case when the total number of kernels is large, but only a relative...

متن کامل

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

Variable Sparsity Kernel Learning Variable Sparsity Kernel Learning

This paper presents novel algorithms and applications for a particular class of mixed-norm regularization based Multiple Kernel Learning (MKL) formulations. The formulations assume that the given kernels are grouped and employ l1 norm regularization for promoting sparsity within RKHS norms of each group and lq, q ≥ 2 norm regularization for promoting non-sparse combinations across groups. Vario...

متن کامل

The Trade-off Between Fast Learning and Dynamic Efficiency

In both static and dynamic, independent private values setups, the efficient allocation is implementable if the distribution of agents’ values is known. Lack of knowledge about the distribution is inconsequential in the static case. But, if distribution of agents’ values is not known in a dynamic framework, and if the designer gradually learns about it by observing present values, endogenously ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2013

ISSN: 0090-5364

DOI: 10.1214/13-aos1095